1. Lambin, P., Rios-Velazquez, E., Leijenaar, R., et al. (2012). Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 48(4), 441-446.
2. Szegedy, C., Vanhoucke, V., Ioffe, S., et al. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2818-2826).
3. Hong, G., Zhang, L., Kong, X., et al. (2021). Artificial Intelligence Image-Assisted Knee Ligament Trauma Repair Efficacy Analysis and Postoperative Femoral Nerve Block Analgesia Effect Research. World Neurosurg, 149, 492-501.
4. Sil, X., Xu, K., Zhong, J., et al. (2021). Knee Cartilage Thickness Differs Alongside Ages: A 3-T Magnetic Resonance Research Upon 2,481 Subjects via Deep Learning. Front Med (Lausanne), 7, 600049.
5. Szoldan, P., Egyed, Z., Szabo, E., et al. (2021). Segmentation of knee cartilages in MR images with artificial intelligence. Orv Hetil, 162(9), 352-360.
6. Zhang, Y., Lian, H., Liu, Y. (2022). Deconstruction of Knee Cartilage Injury in Athletes Using MR Images Based on Artificial Intelligence Segmentation Algorithm. Contrast Media Mol Imaging, 2022, 4165232.
7. Chadoulos, C. G., Tsaopoulos, D. E., Moustakidis, S., et al. (2022). A novel multi-atlas segmentation approach under the semi-supervised learning framework: Application to knee cartilage segmentation. Comput Methods Programs Biomed, 227, 107208.
8. Khans, A., Azam, B., Yao, Y., et al. (2022). Deep collaborative network with alpha matte for precise knee tissue segmentation from MRI. Comput Methods Programs Biomed, 222, 106963.
9. Fayad, L. M., Parekh, V. S., De Castro Lunar, L., et al. (2021). A Deep Learning System for Synthetic Knee Magnetic Resonance Imaging: Is Artificial Intelligence-Based Fat-Suppressed Imaging Feasible? Invest Radiol, 56(6), 357-368.
10. Kaniewska, M., Deininger-Czermak, M., Lohezic, M., et al. (2023). Deep Learning Convolutional Neural Network Reconstruction and Radial k-Space Acquisition MR Technique for Enhanced Detection of Retropatellar Cartilage Lesions of the Knee Joint. Diagnostics (Basel), 13(14), 2438.
11. Wang, Q., Zhao, W., Xing, X., et al. (2023). Feasibility of AI-assisted compressed sensing protocols in knee MR imaging: a prospective multi-reader study. Eur Radiol, 33(12), 8585-8596.
12. Kim, M., Lee, S. M., Park, C., et al. (2022). Deep Learning-Enhanced Parallel Imaging and Simultaneous Multislice Acceleration Reconstruction in Knee MRI. Invest Radiol, 57(12), 826-833.
13. Iuga, A. I., Rauen, P. S., Siedek, F., et al. (2023). A deep learning-based reconstruction approach for accelerated magnetic resonance image of the knee with compressed sense: evaluation in healthy volunteers. Br J Radiol, 96(1146), 20220074.
14. Akai, H., Yasaka, K., Sugawara, H., et al. (2023). Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study. BMC Med Imaging, 23(1), 5.
15. Awan, M. J., Rahim, M. S., Salim, N., et al. (2021). Efficient Detection of Knee Anterior Cruciate Ligament from Magnetic Resonance Imaging Using Deep Learning Approach. Diagnostics, 11(1), 105.
16. Dunnhofer, M., Martinel, N., Micheloni, C. (2021). Improving MRI-based Knee Disorder Diagnosis with Pyramidal Feature Details. In Medical Imaging with Deep Learning (MIDL) 2021, 2021.
17. Zheng, Z., He, R., Lin, C., et al. (2022). Multimodal Magnetic Resonance Imaging to Diagnose Knee Osteoarthritis under Artificial Intelligence. Comput Intell Neurosci, 2022, 6488889.
18. Cui, T., Liu, R., Jing, Y., et al. (2023). Development of machine learning models aiming at knee osteoarthritis diagnosing: an MRI radiomics analysis. J Orthop Surg Res, 18(1), 375
19. Zhuang, Z., Si, L., Wang, S., et al. (2023). Knee Cartilage Defect Assessment by Graph Representation and Surface Convolution. IEEE Trans Med Imaging, 42(2), 368-379.
20. Jamshidi, A., Pelletier, J. P., Labbé, A., et al. (2021). Machine Learning Based Individualized Survival Prediction Model for Total Knee Replacement in Osteoarthritis: Data From the Osteoarthritis Initiative. Arthritis Care Res, 73(10), 1518-1527.
21. Ramkumar, P. N., Karnuta, J. M., Haeberle, H. S., et al. (2021). Effect of Preoperative Imaging and Patient Factors on Clinically Meaningful Outcomes and Quality of Life After Osteochondral Allograft Transplantation: A Machine Learning Analysis of Cartilage Defects of the Knee. Am J Sports Med, 49(8), 2177-2186.
22. Zech, J. R., Carotenuto, G., Jaramillo, D. (2022). Inferring pediatric knee skeletal maturity from MRI using deep learning. Skeletal Radiol, 51(8), 1671-1677.