1. Amhaz, R., Chambon, S., Idier, J., & Baltazart, V. (2016). Automatic Crack Detection on Two-Dimensional Pavement Images: An Algorithm Based on Minimal Path Selection. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 17(10), 2718–2729. https://doi.org/10.1109/TITS.2015.2477675
2. Cao, W., Liu, Q., & He, Z. (2020). Review of Pavement Defect Detection Methods. IEEE Access, 8, 14531–14544. https://doi.org/10.1109/ACCESS.2020.2966881
3. Dong, H., Song, K., Wang, Q., Yan, Y., & Jiang, P. (2022). Deep Metric Learning-Based for Multi-Target Few-Shot Pavement Distress Classification. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 18(3), 1801–1810. https://doi.org/10.1109/TII.2021.3090036
4. Du, Y., Pan, N., Xu, Z., Deng, F., Shen, Y., & Kang, H. (2021). Pavement distress detection and classification based on YOLO network. INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 22(13), 1659–1672. https://doi.org/10.1080/10298436.2020.1714047
5. Gao, Z. (2022). Analysis and control of early cracks of airport concrete pavement. International Conference on Smart Transportation and City Engineering (STCE 2022), 12460, 335–340. https://doi.org/10.1117/12.2658166
6. Gopalakrishnan, K., Khaitan, S. K., Choudhary, A., & Agrawal, A. (2017). Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. CONSTRUCTION AND BUILDING MATERIALS, 157, 322–330. https://doi.org/10.1016/j.conbuildmat.2017.09.110
7. Ihs, A. (2005). The influence of road surface condition on traffic safety and ride comfort. 11–21. https://urn.kb.se/resolve?urn=urn:nbn:se:vti:diva-5159
8. Kheradmandi, N., & Mehranfar, V. (2022). A critical review and comparative study on image segmentation-based techniques for pavement crack detection. CONSTRUCTION AND BUILDING MATERIALS, 321, 126162. https://doi.org/10.1016/j.conbuildmat.2021.126162
9. Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., & Fieguth, P. (2015). A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. ADVANCED ENGINEERING INFORMATICS, 29(2), 196–210. https://doi.org/10.1016/j.aei.2015.01.008
10. Lee, J., Nam, B., & Abdel-Aty, M. (2015). Effects of Pavement Surface Conditions on Traffic Crash Severity. Journal of Transportation Engineering, 141(10), 04015020. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000785
11. Li, B., Wang, K. C. P., Zhang, A., Yang, E., & Wang, G. (2020). Automatic classification of pavement crack using deep convolutional neural network. INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 21(4), 457–463. https://doi.org/10.1080/10298436.2018.1485917
12. Li, Y., Che, P., Liu, C., Wu, D., & Du, Y. (2021). Cross-scene pavement distress detection by a novel transfer learning framework. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 36(11), 1398–1415. https://doi.org/10.1111/mice.12674
13. N., S. S., S., Kavitha., & G, Raghuraman. (2021). Review and Analysis of Crack Detection and Classification Techniques based on Crack Types. International Journal of Applied Engineering Research, 13(8), 6056. https://doi.org/10.37622/IJAER/13.8.2018.6056-6062
14. Nhat-Duc, H., Quoc-Lam, N., & Van-Duc, T. (2018). Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. AUTOMATION IN CONSTRUCTION, 94, 203–213. https://doi.org/10.1016/j.autcon.2018.07.008
15. Oliveira, H., & Correia, P. L. (2013). Automatic Road Crack Detection and Characterization. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 14(1), 155–168. https://doi.org/10.1109/TITS.2012.2208630
16. Que, Y., Dai, Y., Ji, X., Leung, A. K., Chen, Z., Jiang, Z., & Tang, Y. (2023). Automatic classification of asphalt pavement cracks using a novel integrated generative adversarial networks and improved VGG model. ENGINEERING STRUCTURES, 277, 115406. https://doi.org/10.1016/j.engstruct.2022.115406
17. Rodriguez-Lozano, F. J., León-García, F., Gámez-Granados, J. C., Palomares, J. M., & Olivares, J. (2020). Benefits of ensemble models in road pavement cracking classification. Computer-Aided Civil and Infrastructure Engineering, 35(11), 1194–1208. https://doi.org/10.1111/mice.12543
18. Tsubota, T., Fernando, C., Yoshii, T., & Shirayanagi, H. (2018). Effect of Road Pavement Types and Ages on Traffic Accident Risks. Transportation Research Procedia, 34, 211–218. https://doi.org/10.1016/j.trpro.2018.11.034
19. Yan, H., & Zhang, J. (2023). UAV-PDD2023: A benchmark dataset for pavement distress detection based on UAV images. DATA IN BRIEF, 51, 109692. https://doi.org/10.1016/j.dib.2023.109692