Quantum computing and its application
List of Authors
  • Amirul Asyraf Zhahir , Siti Munirah Mohd

Keyword
  • quantum computing, quantum entanglement, quantum state

Abstract
  • Quantum computing is different from classical computing. It is based on quantum mechanics principles, utilizing the attributes such as entanglement and superposition. The significant difference between a quantum computer and a classical computer is the ability to process information astonishingly faster. This is possible due to the quantum entanglement concept. Interests in the quantum entanglement concept have been exponentially growing over the years. In the last decade, significant progress in implementations of quantum computation in quantum information has been achieved. This study selected secondary resource indexed literature from several databases with specific keywords in almost a century. In this paper, quantum computing and its application is presented along with the essence of quantum entanglement role in quantum computing. This study will provide a general understanding of quantum computing and its application and quantum entanglement.

Reference
  • 1. Abbott, A. (2021). Quantum computers to explore precision oncology. Nature Biotechnology, 39(11), 1324-1325. doi:10.1038/s41587-021-01116-x

    2. Almudever, C., Lao, L., Wille, R., & Guerreschi, G. G. (2020). Realizing Quantum Algorithms on Real Quantum Computing Devices.

    3. Ball, P. (2021). First quantum computer to pack 100 qubits enters crowded race. 599, 542.

    4. Bell, J. S. (1964). On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, 1(3), 195-200. doi:10.1103/PhysicsPhysiqueFizika.1.195

    5. Bravyi, S., Gosset, D., & König, R. (2018). Quantum advantage with shallow circuits. Science, 362(6412), 308-311. doi:doi:10.1126/science.aar3106

    6. Bruss, D., Erdélyi, G., Meyer, T., Riege, T., & Rothe, J. (2007). Quantum cryptography: A survey. ACM Computing Surveys, 39, 6-es. doi:10.1145/1242471.1242474

    7. Castelvecchi, D. (2017). Quantum computers ready to leap out of the lab in 2017. Nature, 541(7635), 9-10. doi:10.1038/541009a

    8. Castelvecchi, D. (2020). How ‘spooky’ is quantum physics? The answer could be incalculable. 577, 461-462. doi:10.1038/d41586-020-00120-6

    9. Dilmegani, C. (2021). Top 20+ Quantum Computing Applications / Use Cases. Retrieved from https://research.aimultiple.com/quantum-computing-applications/

    10. Einstein, A., Podolsky, B., & Rosen, N. (1935). Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47(10), 777-780. doi:10.1103/PhysRev.47.777

    11. Erhard, M., Krenn, M., & Zeilinger, A. (2020). Advances in high-dimensional quantum entanglement. Nature Reviews Physics, 2(7), 365-381. doi:10.1038/s42254-020-0193-5

    12. Fedorov, A. K., & Gelfand, M. S. (2021). Towards practical applications in quantum computational biology. Nature Computational Science, 1(2), 114-119. doi:10.1038/s43588-021-00024-z

    13. Ferrie, C. (2019). Quantum computing for all? Nature Electronics, 2(3), 90-90. doi:10.1038/s41928-019-0223-4

    14. Giani, A. (2021). Quantum computing opportunities in renewable energy. Nature Computational Science, 1(2), 90-91. doi:10.1038/s43588-021-00032-z

    15. Guo, Y. (2019). Introduction to quantum entanglement. AIP Conference Proceedings, 2066(1), 020009. doi:10.1063/1.5089051

    16. Kumar, A., & Garhwal, S. (2021). State-of-the-Art Survey of Quantum Cryptography. Archives of Computational Methods in Engineering, 28(5), 3831-3868. doi:10.1007/s11831-021-09561-2

    17. Maslov, D., Kim, J.-S., Bravyi, S., Yoder, T. J., & Sheldon, S. (2021). Quantum advantage for computations with limited space. Nature Physics, 17(8), 894-897. doi:10.1038/s41567-021-01271-7

    18. Matthews, D. (2021). How to get started in quantum computing. 591, 166-167.

    19. Mooney, G. J., Hill, C. D., & Hollenberg, L. C. L. (2019). Entanglement in a 20-Qubit Superconducting Quantum Computer. Scientific Reports, 9(1), 13465. doi:10.1038/s41598-019-49805-7

    20. Schrödinger, E. (1935). Discussion of Probability Relations between Separated Systems. Mathematical Proceedings of the Cambridge Philosophical Society, 31(4), 555-563. doi:10.1017/S0305004100013554

    21. Sehgal, S. K., & Gupta, R. (2019). A Comparative Study of Classical and Quantum Cryptography. 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom), 869-873.

    22. Shi, X., Chen, L., & Hu, M. (2021). Multilinear monogamy relations for multiqubit states. Physical Review A, 104(1), 012426. doi:10.1103/PhysRevA.104.012426

    23. Song, C., Cui, J., Wang, H., Hao, J., Feng, H., & Li, Y. (2019). Quantum computation with universal error mitigation on a superconducting quantum processor. Science Advances, 5(9), eaaw5686. doi:doi:10.1126/sciadv.aaw5686

    24. Tura, J. (2021). Boosting simulation of quantum computers. Nature Computational Science, 1(10), 638-639. doi:10.1038/s43588-021-00145-5

    25. Upadhyay, L. (2019). Quantum Cryptography: A Survey, Cham.

    26. Wang, Y., Li, Y., Yin, Z.-Q., & Zeng, B. (2018). 16-qubit IBM universal quantum computer can be fully entangled. npj Quantum Information, 4, 1-6.

    27. Yu, Y. (2021). Advancements in Applications of Quantum Entanglement. Journal of Physics: Conference Series, 2012(1), 012113. doi:10.1088/1742-6596/2012/1/012113

    28. Zhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C., Peng, L.-C., Luo, Y.-H., . . . Pan, J.-W. (2020). Quantum computational advantage using photons. Science, 370(6523), 1460-1463. doi:doi:10.1126/science.abe8770