1. Aamer, A., Eka Yani, L., & Alan Priyatna, I. (2020). Data analytics in the supply chain management: Review of machine learning applications in demand forecasting. Operations and Supply Chain Management: An International Journal, 14(1), 1-13.
2. Abd El Kareem Gomaa, H. (2022). Modern Trends in the Development of Smart Agriculture Projects. International Journal of Modern Agriculture and Environment, 2(1), 33-44.
3. Altarturi, H. H., Nor, A. R. M., Jaafar, N. I., & Anuar, N. B. (2023). A bibliometric and content analysis of technological advancement applications in agricultural e-commerce. Electronic Commerce Research, 1-44.
4. Anitha, J., & Saranya, N. (2022). Cassava leaf disease identification and detection using deep learning approach. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 17(2).
5. Beltrán-Lugo, L., Izaguirre-Díaz de León, F., Peinado-Guevara, V., Peinado-Guevara, H., Herrera-Barrientos, J., Cuadras-Berrelleza, A. A., & Montoya-Leyva, M. Á. (2023). Sustainable Innovation Management in the Shrimp Sector of the Municipality of Guasave, State of Sinaloa, Mexico. Sustainability, 15(4), 3161.
6. Chandan, A., John, M., & Potdar, V. (2023). Achieving UN SDGs in Food Supply Chain Using Blockchain Technology. Sustainability, 15(3), 2109.
7. Chhetri, T. R., Hohenegger, A., Fensel, A., Kasali, M. A., & Adekunle, A. A. (2023). Towards improving prediction accuracy and user-level explainability using deep learning and knowledge graphs: A study on cassava disease. Expert Systems with Applications, 233, 120955.
8. Della Pelle, F., Bukhari, Q. U. A., Diduk, R. A., Scroccarello, A., Compagnone, D., & Merkoçi, A. (2023). Freestanding laser-induced two dimensional heterostructures for self- contained paper-based sensors. Nanoscale, 15(15), 7164-7175.
9. Enescu, F. M., Bizon, N., Onu, A., Răboacă, M. S., Thounthong, P., Mazare, A. G., & Șerban, G. (2020). Implementing blockchain technology in irrigation systems that integrate photovoltaic energy generation systems. Sustainability, 12(4), 1540.
10. Fennimore, S. A., & Cutulle, M. (2019). Robotic weeders can improve weed control options for specialty crops. Pest management science, 75(7), 1767-1774.
11. Gomes, J., Esteves, I., Neto, V. V. G., David, J. M. N., Braga, R., Arbex, W., Kassab, M., & de Oliveira, R. F. (2023). A scientific software ecosystem architecture for the livestock domain. Information and Software Technology, 160, 107240.
12. Henchion, M. M., Regan, Á., Beecher, M., & MackenWalsh, Á. (2022). Developing ‘Smart’Dairy Farming Responsive to Farmers and Consumer-Citizens: A Review. Animals, 12(3), 360.
13. Jansing, J., Schiermeyer, A., Schillberg, S., Fischer, R., & Bortesi, L. (2019). Genome editing in agriculture: technical and practical considerations. International journal of molecular sciences, 20(12), 2888.
14. Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., & Landivar-Bowles, J. (2021). The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology, 70, 15- 22.
15. Kartika, B., Parson, S. W., Kassim, Z., & Chowdhury, A. J. K. (2022). Overview of halal freshwater aquaculture system: Malaysian perspectives. Water Conservation & Management, 6(1), 01-05.
16. Kaur, H. (2021). Modelling internet of things driven sustainable food security system. Benchmarking: An International Journal, 28(5), 1740-1760.
17. Kour, V. P., & Arora, S. (2020). Recent developments of the internet of things in agriculture: a survey. IEEE Access, 8, 129924-129957.
18. Lachman, J., & López, A. (2022). The nurturing role of the local support ecosystem in the development of the Agtech sector in Argentina. Journal of Agribusiness in Developing and Emerging Economies, 12(4), 714-729.
19. Mahmud, M. S. A., Abidin, M. S. Z., Emmanuel, A. A., & Hasan, H. S. (2020). Robotics and automation in agriculture: present and future applications. Applications of Modelling and Simulation, 4, 130-140.
20. Masud, M. M., Azam, M. N., Mohiuddin, M., Banna, H., Akhtar, R., Alam, A. F., & Begum, H. (2017). Adaptation barriers and strategies towards climate change: Challenges in the agricultural sector. Journal of Cleaner Production, 156, 698-706.
21. Mohamed, E. S., Belal, A., Abd-Elmabod, S. K., El-Shirbeny, M. A., Gad, A., & Zahran, M.B. (2021). Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 971-981.
22. Mozumdar, L. (2012). Agricultural productivity and food security in the developing world. Bangladesh Journal of Agricultural Economics, 35(454-2016-36350), 53-69.
23. Neethirajan, S., & Kemp, B. (2021). Digital twins in livestock farming. Animals, 11(4), 1008.
24. Pakseresht, A., Ahmadi Kaliji, S., & Xhakollari, V. (2022). How blockchain facilitates the transition toward circular economy in the food chain? Sustainability, 14(18), 11754.
25. Patel, A., Mahore, A., Nalawade, R. D., Upadhyay, A., & Choudhary, V. (2023). Advancements in Precision Agriculture: Harnessing the Power of Artificial Intelligence and Drones in Indian Agriculture. World Environment Day, 43.
26. Prabhu, S. S., Kumar, A. V., Murugesan, R., Saha, J., & Dasgupta, I. (2021). Adoption of precision agriculture by detecting and spraying herbicide using UAV. Basrah Journal of Agricultural Sciences, 34, 21-33.
27. Prause, L. (2021). Digital agriculture and labor: A few challenges for social sustainability. Sustainability, 13(11), 5980.
28. Raucci, A., Miglione, A., Lenzi, L., Fabbri, P., Di Tocco, J., Massaroni, C., Presti, D. L., Schena, E., Pifferi, V., & Falciola, L. (2023). Characterization and application of porous PHBV-based bacterial polymers to realize novel bio-based electroanalytical (bio) sensors. Sensors and Actuators B: Chemical, 379, 133178.
29. Rayna, T., & Striukova, L. (2016). From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technological Forecasting and Social Change, 102, 214-224.
30. Raza, Z., Haq, I. U., & Muneeb, M. (2023). Agri-4-All: A Framework for Blockchain Based Agricultural Food Supply Chains in the Era of Fourth Industrial Revolution. IEEE Access, 11, 29851-29867.
31. Rojas, L. F., Zapata, P., & Ruiz-Tirado, L. (2022). Agro-industrial waste enzymes: Perspectives in circular economy. Current Opinion in Green and Sustainable Chemistry, 34, 100585.
32. Ronaghi, M. H. (2021). A blockchain maturity model in agricultural supply chain. Information Processing in Agriculture, 8(3), 398-408.
33. Rowan, N. J. (2023). The role of digital technologies in supporting and improving fishery and aquaculture across the supply chain–Quo Vadis? Aquaculture and Fisheries, 8(4), 365- 374.
34. Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. (2019). Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796.
35. Soledispa-Cañarte, B. J., Pibaque-Pionce, M. S., Merchán-Ponce, N. P., Alvarez, D. C. M., Tovar-Quintero, J., Escobar-Molina, D. F., Cedeño-Ramirez, J. D., & Rincon-Guio, C. (2023). The Role of Logistics 4.0 in Agribusiness Sustainability and Competitiveness, A Bibliometric and Systematic Literature Review.
36. Spanaki, K., Sivarajah, U., Fakhimi, M., Despoudi, S., & Irani, Z. (2022). Disruptive technologies in agricultural operations: A systematic review of AI-driven AgriTech research. Annals of Operations Research, 308(1-2), 491-524.
37. Taneja, A., Nair, G., Joshi, M., Sharma, S., Sharma, S., Jambrak, A. R., Roselló-Soto, E., Barba, F. J., Castagnini, J. M., & Leksawasdi, N. (2023). Artificial Intelligence: Implications for the Agri-Food Sector. Agronomy, 13(5), 1397.
38. Thilakarathne, N. N., Bakar, M. S. A., Abas, P. E., & Yassin, H. (2022). A cloud enabled crop recommendation platform for machine learning-driven precision farming. Sensors, 22(16), 6299.
39. Trigona, C., Puglisi, I., Baglieri, A., & Gueli, A. M. (2023). Measurement of Visible Radiation through a Sansevieria cylindrica-Based “Living Sensor”. Applied Sciences, 13(6), 3896.
40. Xiong, H., Dalhaus, T., Wang, P., & Huang, J. (2020). Blockchain technology for agriculture: applications and rationale. frontiers in Blockchain, 3, 7.
41. Yadav, S., Kaushik, A., Sharma, M., & Sharma, S. (2022). Disruptive technologies in smart farming: an expanded view with sentiment analysis. AgriEngineering, 4(2), 424-460.
42. Yoha, K. S., & Moses, J. A. (2023). 3D Printing Approach to Valorization of Agri-Food Processing Waste Streams. Foods, 12(1), 212.